Dept Banner
Dept Banner

Irvine, Kenneth

Kenneth Irvine
Professor
Rutgers University
Dept. of Molecular Biology and Biochemistry
Waksman Institute
Piscataway, NJ 08854
(848) 445-2332
This email address is being protected from spambots. You need JavaScript enabled to view it.

Cell-signaling, pattern formation, growth control, developmental glycobiology

Control of Growth and Morphogenesis

The control of growth is a fundamental, yet poorly understood, aspect of development. What dictates the size of a particular organ (e.g., how does a hand or a heart "know" how large it should be) or a particular organism (e.g., why is a mouse small and an elephant large)? Decades ago, regeneration experiments revealed an intimate relationship between organ patterning and organ growth, but the molecular basis for this relationship has remained elusive. More recently, molecular insights into how growth is controlled have come from the identification and characterization in model systems of intercellular signaling pathways that are required for the normal control of organ growth. Many of these pathways are highly conserved among different phyla. We are engaged in projects whose long-term goals are to define relationships between patterning and growth in developing and regenerating organs and to determine how these patterning inputs are integrated with other factors that influence organ growth, such as nutrition and mechanical forces. We also study how these same growth control pathways influence tumor formation in cancers. Much of our research takes advantage of the powerful genetic, molecular, and cellular techniques available in Drosophila melanogaster, which facilitate both gene discovery and the analysis of gene function.
Our current research focuses on two intersecting signaling pathways, the Hippo pathway and the Dachsous-Fat pathway. These pathways control the growth and shape of developing organs. We study both the molecular mechanisms of signal transduction and the roles of these pathways in different developmental and physiological contexts. The Hippo signaling pathway has emerged over the past decade as one of the most important growth regulatory pathways in animals.

In certain contexts, the Hippo pathway is regulated by the Fat pathway. The fat gene encodes a large transmembrane protein of the cadherin family. In addition to its influence on Hippo signaling, Fat also influences planar cell polarity (PCP), which is a polarization of cell structures and cell behaviors within the plane of a tissue. In this way, Fat modulates not only organ size but also organ shape (e.g., by influencing the orientation of cell divisions). Fat is regulated by two proteins expressed in gradients: Dachsous (Ds), which like Fat is a large cadherin family protein and can bind to Fat, and Four-jointed (Fj), which we found is a novel Golgi-localized kinase that phosphorylates cadherin domains of Fat and Ds to modulate binding between them. One remarkable feature of Fat signaling is that rather than responding solely to the level of Ds and Fj, Fat is also regulated by the slope and vector of their expression gradients: the slope influences Hippo signaling and the vector influences PCP. Clues to how this novel regulatory mechanism operates have come from the identification and characterization of downstream signaling components, which we have pursued through a combination of genetic, biochemical, and cell biological experiments. We have also investigated how other signaling pathways that modulate organ growth intersect with the Hippo signaling pathway. We identified molecular crosstalk between epidermal growth factor receptor (EGFR) signaling and Hippo signaling that promotes growth, which is of particular interest because activation of EGFR or some of its downstream effectors, like Ras, is observed in many human cancers, and we are exploring the significance of this cross-talk in mammalian cancer models. We have also identified a link between Hippo signaling and JNK signaling, which is particularly important for promoting regenerative growth after tissue damage.

Most recently, we have investigated how mechanical forces experienced by cells influence Hippo signaling, and thereby organ growth. In developing Drosophila tissues, we found that accumulation of a negative regulator of Warts, called Jub, at cell-cell junctions is dependent upon cytoskeletal tension. Jub then recruits Warts into junctions; formation of this Jub-Warts complex inhibits Warts activity, thereby promoting growth. This occurs in part because Warts is activated in specific membrane complexes, interaction with Jub prevents Warts from going to sites where it can be activated. Current studies in the lab investigate molecular processes involved in this tension-dependent regulation of Jub, how this pathway is deployed in different contexts in vivo, and its conservation in mammalian cells.

 

Publications

Contact Us

Division of Life Sciences Graduate Program Office
Rutgers, The State University of New Jersey
Nelson Lab-604 Allison Rd
Piscataway, NJ 08854
Phone: 848.445.9517
gradoffice@dls.rutgers.edu